
An Introduction to Quantum Groups
and their Representation Theory:

Uq(sl2)

Johnny L. Fonseca

GARTS

September 30, 2020

Johnny L. Fonseca (GARTS) September 30, 2020 1 / 38



Defining Uq(sl2)

Let F be a field, and consider F(q) where q2 6= 1. Then

Definition

Uq(sl2) is the associative, unital F(q)-algebra defined by generators
E ,F ,K±1 with relations

KK−1 = 1 = K−1K

KEK−1 = q2E

KFK−1 = q−2F

EF − FE =
K − K−1

q − q−1

Note: q2 6= 1 is required in the last relation, but also implies from the
middle two that Uq(sl2) is a noncommutative algebra.
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Representations of g and G

Let U and V be fin.-dim. representations (over C) of g (resp. G ). Then
one defines a g-module (resp. G -module) structure on U ⊗ V , C, and U∗

x · (u ⊗ v) := (x · u)⊗ v + u ⊗ (x · v), g · (u ⊗ v) := (g · u)⊗ (g · v)

x · a := 0, g · a := a

(x · f )(u) := f (−x · u), (g · f )(u) := f (g−1 · u)
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Representations of g and G (cont.)

Note that these actions allow one to define a g-module (resp. G -module)
structure on Hom(U,V ) by utilizing the isomorphism
Hom(U,V ) ∼= U∗ ⊗ V i.e.

(x · f )(u) := x · (f (u))− f (x · u), (g · f )(u) := g · (f (g−1 · u))

Note: With this definition of g-module (resp. G -module) structure on
Hom(U,V ), the aforementioned isomorphism of vector spaces becomes an
isomorphism of g-modules (resp. G -modules).
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Universal Conventions

My field is algebraically closed and of characteristic zero - so C.

I will say module and representation interchangeably, but what
matters is the map!

My modules are finite-dimensional.

All of my tensor products are over C.

A Uq(sl2)-module (M, φ) is an algebra homomorphism
φ : Uq(sl2)→ End(M)
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Representations of Uq(sl2): A Comultiplication

Given that End(M ⊗ N) ∼= End(M)⊗ End(N) as algebras, it should be
clear that if

φ : Uq(sl2)→ End(M), ψ : Uq(sl2)→ End(N)

are representations, we at least have the algebra homomorphism

φ⊗ ψ : Uq(sl2)⊗ Uq(sl2)→ End(M)⊗ End(N), x ⊗ y 7→ φ(x)⊗ ψ(y)

Which then by the above identification gives us a map on M ⊗ N.
Thus, if we can construct an algebra homomorphism from Uq(sl2) to its
tensor square, we can take the composition and make the tensor product
of modules into a module.
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Representations of Uq(sl2): A Comultiplication (cont.)

Lemma

There is a unique algebra homomorphism ∆ : Uq(sl2)→ Uq(sl2)⊗Uq(sl2)
given by

∆(E ) := E ⊗ 1 + K ⊗ E

∆(F ) := F ⊗ K−1 + 1⊗ F

∆(K ) := K ⊗ K

Note: The first two formulas are eerily similar to how Lie algebras act on
tensor products, while the last is how groups act on tensor products.
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(Sketch of) Proof.

As this map is defined on the generators of Uq(sl2), we need only check
that the images ∆(E ),∆(F ),∆(K±1) preserve the defining relations of
Uq(sl2). I will show it for the last relation, leaving it to the interested
viewer to check the rest!

Recall that the fourth relation states

EF − FE =
K − K−1

q − q−1

Thus, we need to prove that taking ∆ of both sides gives the same
result.
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(Sketch of) Proof (cont.)

On the left hand side we have

∆(EF − FE ) = ∆(E )∆(F )−∆(F )∆(E )

= (E ⊗ 1 + K ⊗ E )(F ⊗ K−1 + 1⊗ F )

− (F ⊗ K−1 + 1⊗ F )(E ⊗ 1 + K ⊗ E )

= EF ⊗ K−1 + E ⊗ F + KF ⊗ EK−1 + K ⊗ EF

− FE ⊗ K−1 − FK ⊗ K−1E − E ⊗ F − K ⊗ FE

= (EF − FE )⊗ K−1 + K ⊗ (EF − FE )

+ KF ⊗ EK−1 − FK ⊗ K−1E

= (EF − FE )⊗ K−1 + K ⊗ (EF − FE )

+ q2q−2FK ⊗ K−1E − FK ⊗ K−1E
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(Sketch of) Proof (cont.)

Thus,

∆(EF − FE ) = (EF − FE )⊗ K−1 + K ⊗ (EF − FE )

=
K − K−1

q − q−1
⊗ K−1 + K ⊗ K − K−1

q − q−1

=
K ⊗ K − K−1 ⊗ K−1

q − q−1

= ∆

(
K − K−1

q − q−1

)
and indeed the relation holds, as well as the others.

We call ∆ : Uq(sl2)→ Uq(sl2)⊗ Uq(sl2) a comultiplication. More on why
in a few slides!
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Representations of Uq(sl2): A Counit

If we want to turn the ground field into a representation, we need to
construct some algebra homomorphism

ε : Uq(sl2)→ End(C)

However, End(C) ∼= C as algebras i.e. an endomorphism of C is the same
thing as picking a scalar.
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Representations of Uq(sl2): A Counit (cont.)

Lemma

There is a unique algebra homomorphism ε : Uq(sl2)→ C given by

ε(E ) := 0

ε(F ) := 0

ε(K ) := 1

We call ε a counit. More on why in a few slides!

Note: Yet again, the first two formulas are eerily similar to how Lie
algebras act on the ground field, while the last is how groups act on the
ground field.
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On Comultiplications and Counits

One of the equivalent ways of defining an associative, unital C-algebra is
as a triple (A, µ, ι) consisting of a C-vector space A and C-linear maps
µ : A⊗ A→ A and ι : C→ A such that the following diagrams commute:

Johnny L. Fonseca (GARTS) September 30, 2020 13 / 38



On Comultiplications and Counits

One of the equivalent ways of defining an associative, unital C-algebra is
as a triple (A, µ, ι) consisting of a C-vector space A and C-linear maps
µ : A⊗ A→ A and ι : C→ A such that the following diagrams commute:

Johnny L. Fonseca (GARTS) September 30, 2020 13 / 38



On Comultiplications and Counits (cont.)

(A⊗ A)⊗ A A⊗ (A⊗ A)

A⊗ A A⊗ A

A

αA,A,A

µ⊗idA idA⊗µ

µ µ

A⊗ C C⊗ A

A

A⊗ A A⊗ A

ρA

idA⊗ι

λA

ι⊗idA

µ µ
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On Comultiplications and Counits (cont.)

It might be new for some, but perhaps not surprising that there is a
related object one can define called a coassociative, counital C-coalgebra.

Would anyone like to guess its definition?
It is a triple (C ,∆, ε) consisting of a C-vector space C and C-linear maps
∆ : C → C ⊗C and ε : C → C such that the following diagrams commute:
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It is a triple (C ,∆, ε) consisting of a C-vector space C and C-linear maps
∆ : C → C ⊗C and ε : C → C such that the following diagrams commute:
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On Comultiplications and Counits (cont.)

(C ⊗ C )⊗ C C ⊗ (C ⊗ C )

C ⊗ C C ⊗ C

C

α−1
C ,C ,C

∆⊗idC idC⊗∆

∆ ∆

C ⊗ C C⊗ C

C

C ⊗ C C ⊗ C

ρ−1
C

∆

λ−1
C

∆

idC⊗ε ε⊗idC
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On Comultiplications and Counits (cont.)

It is then a computational check on the generators to show that
(Uq(sl2),∆, ε) is a coassociative, counital C-coalgebra! But the previous
lemmas said something more about the comultiplication and counit.

These
maps also happen to be algebra homomorphisms! This leads to the
following definition
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Bialgebras

Definition

A bialgebra is a quintuple (B, µ, ι,∆, ε) such that (B, µ, ι) is an
associative, unital algebra, (B,∆, ε) is a coassociative, counital coalgebra,
and such that any two of the equivalent conditions hold

1 ∆ and ε are algebra homomorphisms.

2 µ and ι are coalgebra homomorphisms.
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Representations of Uq(sl2): An Antipode

Given a module M we want to turn M∗ := Hom(M,C) into a
Uq(sl2)-module as well.
Let us recall how Lie algebras and groups act on duals:

(x · f )(u) := f (−x · u), (g · f )(u) := f (g−1 · u)
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Representations of Uq(sl2): An Antipode (cont.)

Lemma

There is a unique algebra antiautomorphism S : Uq(sl2)→ Uq(sl2) given
by

S(E ) := −K−1E

S(F ) := −FK
S(K ) := K−1

We call S an antipode.

Note: Yet again, the first two formulas are eerily similar to how Lie
algebras act on duals, while the last is how groups act on duals.
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Representations of Uq(sl2): An Antipode (cont.)

Thus, if (M, φ) is a Uq(sl2)-module, then M∗ can be given a
Uq(sl2)-module structure by defining

φS : Uq(sl2)→ End(M∗), x 7→ (f 7→ f ◦ φ(S(x)))
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On the Antipode

Lemma

The following diagrams commute

Uq(sl2) Uq(sl2)⊗ Uq(sl2) Uq(sl2) Uq(sl2)⊗ Uq(sl2)

Uq(sl2) Uq(sl2)⊗ Uq(sl2) Uq(sl2) Uq(sl2)⊗ Uq(sl2)

∆

ι◦ε id⊗S

∆

ι◦ε S⊗id

µ µ

(Sketch of) Proof.

One proceeds to verify this on the generators of Uq(sl2) and that ι ◦ ε is
multiplicative; then the commutativity indeed follows. Proving the equality
on the generators is tedious computation, but the latter part is delicate.
The reason it is not readily true is ι is not an algebra homomorphism, nor
are S and µ.
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Hopf Algebras

Definition

A Hopf algebra is a sextuple (H, µ, ι,∆, ε,S) such that (H, µ, ι,∆, ε) is a
bialgebra, and such that the following diagrams commute

H H ⊗ H H H ⊗ H

H H ⊗ H H H ⊗ H

∆

ι◦ε id⊗S

∆

ι◦ε S⊗id

µ µ

(Uq(sl2), µ, ι,∆, ε,S) as defined throughout this talk is a Hopf algebra!
Note: The antipode is uniquely determined by having to satisfy the
commutativity of the above two diagrams. The map will automatically be
an antihomomorphism, but might not necessarily be invertible.
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What About Lie Algebras and Groups?

Modules of a Lie algebra g (resp. a group G ) are equivalent to modules of
its universal enveloping algebra U(g) (resp. group algebra C[G ]). In
particular, both of these associative, unital algebras admit the following
respective Hopf algebra structure

U(g)

∆ : x 7→ x ⊗ 1 + 1⊗ x
ε : x 7→ 0
S : x 7→ −x

C[G ]

∆ : g 7→ g ⊗ g
ε : g 7→ 1
S : g 7→ g−1

Note: For group algebras, the group elements are typically denoted
alternatively to not confuse the operations of the algebra with that of the
group e.g. writing δg to represent the basis element corresponding to
g ∈ G .
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Where the Hopf are these Hopf Algebras?

Suppose (U, φ) and (V , ψ) are g-modules, hence U(g)-modules. Then I
claim their tensor product U ⊗ V becomes a U(g)-module by utilizing the
comultiplication. And indeed, following the schematic from quantum
groups:

x x ⊗ 1 + 1⊗ x φ(x)⊗ idV + idU ⊗ ψ(x)∆ φ⊗ψ
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Where the Hopf are these Hopf Algebras? (cont.)

Thus, for an elementary tensor u ⊗ v ∈ U ⊗ V

x · (u ⊗ v) := (((φ⊗ ψ) ◦∆)(x))(u ⊗ v)

= ((φ⊗ ψ)(x ⊗ 1 + 1⊗ x))(u ⊗ v)

= (φ(x)⊗ idV + idU ⊗ ψ(x))(u ⊗ v)

= φ(x)(u)⊗ idV (v) + idU(u)⊗ ψ(x)(v)

= φ(x)(u)⊗ v + u ⊗ ψ(x)(v)

= (x · u)⊗ v + u ⊗ (x · v)

Which is exactly what we saw in the beginning!
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Where the Hopf are these Hopf Algebras? (cont.)
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Commutativity and Cocommutativity, that is the slide

An equivalent way to define a commutative algebra is to require the
following diagram to commute:

A⊗ A A⊗ A

A

τ

µ
µ

where τ : x ⊗ y 7→ y ⊗ x . Unsurprisingly, a coalgebra is then called
cocommutative if the dual diagram commutes:

C ⊗ C C ⊗ C

C

τ

∆
∆
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Cartier-Gabriel-Kostant theorem

Theorem

Any cocommutative Hopf algebra H over an algebraically closed field K of
characteristic zero is of the form

K[G ] n U(g),

where g is a Lie algebra and G is a group acting on g.

Note: g is actually the Lie algebra of primitive elements of H, and G is the
group of group-like elements of H.
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What about Hom sets?

As with the dual space, let us turn to the Lie algebra and group rep.
theory picture for motivation. To that end, recall that Hom(U,V )
becomes a g-module (resp. G -module) with the following action induced
from that on U and V

(x · f )(u) := x · (f (u))− f (x · u), (g · f )(u) := g · (f (g−1 · u))

Now that we are aware of comultiplications and antipodes, we can
manipulate the above action to see what the picture should be for Uq(sl2).
Let us do so for the Lie algebra case.
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What about Hom sets? (cont.)

(x · f )(u) := x · (f (u))− f (x · u)

= x · (f (1 · u)) + 1 · f (S(x) · u)

= ((x ⊗ 1 + 1⊗ S(x))(f ))(u)

= (((id⊗ S)(x ⊗ 1 + 1⊗ x))(f ))(u)

= ((((id⊗ S) ◦∆)(x))(f ))(u)

= ((((id⊗ S) ◦ τ ◦∆)(x))(f ))(u)
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A Subtlety in Isomorphisms

For f ∈ U∗ and v ∈ V let ϕf ,v : U → V be the linear map defined by
u 7→ f (u)v . Then we have natural isomorphisms of vector spaces

V ⊗ U∗ → Hom(U,V ), v ⊗ f 7→ ϕf ,v

and similarly
U∗ ⊗ V → Hom(U,V ), f ⊗ v 7→ ϕf ,v

where really the second isomorphism follows from the first since
τ : V ⊗ U∗ → U∗ ⊗ V is an isomorphism of vector spaces.
Note: The g-modules (resp. G -module) structure on Hom(U,V ) makes
these isomorphisms become isomorphisms of g-modules (resp.
G -modules).
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The story of Hom(U ,V ) for Uq(sl2)

There are in fact two ways of naturally defining a module structure on
Hom(U,V ). Moreover, each of these ways makes only one of the two
natural isomorphisms become isomorphisms of Uq(sl2)-modules!
Specifically, if ∆(x) =

∑
i
xi ⊗ x ′i , then the action

(x · f )(u) :=
∑
i

xi · f (S(x ′i ) · u)

makes the previous map V ⊗ U∗ → Hom(U,V ) an isomorphism of
Uq(sl2)-modules. If instead we take

(x · f )(u) :=
∑
i

x ′i · f (S(xi ) · u)

then U∗ ⊗ V → Hom(U,V ) becomes an isomorphism of Uq(sl2)-modules.
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Symmetry of Tensor Products

Recall that τ : U ⊗V → V ⊗U is an isomorphism of vector spaces for any
pair of vector spaces. Moreover, this map is in fact also an isomorphism of
modules for a Lie algebra or for a group.
The transposition map is no longer an isomorphism for Uq(sl2)-modules!
The natural approach to just swapping tensor factors will not in general
preserve the Uq(sl2) structure. We thus need something else to be able to
swap tensor factors in place of τ . To that end, what really makes τ so
special?
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Braiding

Let V1,V2,V3 be C-vector spaces. Then the following diagrams commute

V1 ⊗ (V3 ⊗ V2) (V1 ⊗ V3)⊗ V2

V1 ⊗ (V2 ⊗ V3) (V3 ⊗ V1)⊗ V2

(V1 ⊗ V2)⊗ V3 V3 ⊗ (V1 ⊗ V2)

α−1
1,3,2

τ1,3⊗id2id1⊗τ2,3

α−1
1,2,3

τ12,3

α−1
3,1,2

and

(V2 ⊗ V1)⊗ V3 V2 ⊗ (V1 ⊗ V3)

(V1 ⊗ V2)⊗ V3 V2 ⊗ (V3 ⊗ V1)

V1 ⊗ (V2 ⊗ V3) (V2 ⊗ V3)⊗ V1

α2,1,3

id2⊗τ1,3τ1,2⊗id3

α1,2,3

τ1,23

α2,3,1
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Braiding (cont.)

Definition

The category of Uq(sl2)-modules is said to admit a braiding

{τU,V : U ⊗ V → V ⊗ U | U,V are Uq(sl2)-modules}

if each τU,V is an invertible Uq(sl2)-linear map, and if for any three
Uq(sl2)-modules U,V ,W the above hexagon diagrams commute. We
further call the braiding symmetric if

τV ,U ◦ τU,V = idU⊗V
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Braiding (cont.)

The category of g-modules and of G -modules admit a symmetric
braiding e.g. they have the transposition τ .

The category of Uq(sl2)-modules also admits a braiding, but this
braiding is nonsymmetric! The braiding is given by( ∞∑

n=0

(−1)nq−n(n−1)/2 (q − q−1)n

[n]!
F n ⊗ En

)
◦ f̃ ◦ τ

where

[n]! := [n] · [n − 1] · · · · · [1] =
n∏

j=1

qj − q−j

q − q−1

f̃ is essentially a scaling factor, which scales each eigenspace of the
corresponding tensor factor by an appropriate value.
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...Now What?

The construction of general quantum groups Uq(g) where g is a
Kac-Moody algebra, as well as a Lie superalgebra.

Ribbon categories and ribbon Hopf algebras.

Quantum Invariants of Knots and 3-Manifolds by V.G. Turaev

Hecke algebras and the Braid group.

Statistical Mechanics and Quantum Yang-Baxter equation.

Algebraic Combinatorics and nonsymmetric Macondald Polynomials

Taking the classical limit q → 1.

Modular tensor categories when q is a primitive root of unity.

Crystal bases and letting q → 0.
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Thank You!

applause
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